Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Journal of Clinical and Translational Science ; 7(s1):130, 2023.
Article in English | ProQuest Central | ID: covidwho-2298146

ABSTRACT

OBJECTIVES/GOALS: This report evaluates participants'experiences from three universities who assembled a complex grant proposal related to research on post-acute sequala of COVID-19 (PASC), also called long COVID. Activities reviewed ranged from the assembly of the team to responses to reviews by the National Center for Advancing Translational Sciences (NCATS). METHODS/STUDY POPULATION: Data were collected by means of semi-structured interviews, conducted and recorded on Zoom, with a sample of 15 scientists and staff both during proposal assembly and following proposal review. The sample comprised 40% of the total team equally selected from the 3 universities, The interview protocol was reviewed by the IRB at UTMB and the interviews were recorded on Zoom, and analyzed by means of the constant comparative strategy in the grounded theory method of qualitative research. Given the relatively small number of interviews in this project, we paid special attention to preserving the confidentiality of respondents. Only the verbal tracks of the interviews were professionally transcribed. Respondents were asked to suggest changes for future inter-organizational proposals. RESULTS/ANTICIPATED RESULTS: FIRST INTERVIEWS *LEADERSHIP: The scope of leadership opportunities was expanded as sub-teams in specific areas such as community engagement were formed. *TEAM: Each university's community engagement team specializes in a different ethnic clientele, precluding a singular statement for the proposal. SECOND INTERVIEWS *LEADERSHIP: Staff members noted that the team concept too easily evolved into a bureaucratic format, resulting in less negotiation and more direction. *ASSEMBLY TASKS: The Writing Team turned out to be one of the most critical staff teams. *COMMUNICATION: The behavioral scientists in community engagement do not necessarily share paradigms (e.g., public health, psychology, and social work). They had difficulty generating productive communication and a unified statement for the proposal. DISCUSSION/SIGNIFICANCE: The scientists, as a group, suggested that future proposals should focus on one general topic, such as the microbiome, as opposed to attempting to integrate widely divergent interests. The scientists as a group should decide a priori whether to treat innovative ideas such as machine learning science as a science or a service.

2.
Virol J ; 19(1): 84, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1846850

ABSTRACT

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, fever, and inflammation but have been associated with complications in community-acquired pneumonia. Observations shortly after the start of the COVID-19 pandemic in 2020 suggested that ibuprofen was associated with an increased risk of adverse events in COVID-19 patients, but subsequent observational studies failed to demonstrate increased risk and in one case showed reduced risk associated with NSAID use. METHODS: A 38-center retrospective cohort study was performed that leveraged the harmonized, high-granularity electronic health record data of the National COVID Cohort Collaborative. A propensity-matched cohort of 19,746 COVID-19 inpatients was constructed by matching cases (treated with NSAIDs at the time of admission) and 19,746 controls (not treated) from 857,061 patients with COVID-19 available for analysis. The primary outcome of interest was COVID-19 severity in hospitalized patients, which was classified as: moderate, severe, or mortality/hospice. Secondary outcomes were acute kidney injury (AKI), extracorporeal membrane oxygenation (ECMO), invasive ventilation, and all-cause mortality at any time following COVID-19 diagnosis. RESULTS: Logistic regression showed that NSAID use was not associated with increased COVID-19 severity (OR: 0.57 95% CI: 0.53-0.61). Analysis of secondary outcomes using logistic regression showed that NSAID use was not associated with increased risk of all-cause mortality (OR 0.51 95% CI: 0.47-0.56), invasive ventilation (OR: 0.59 95% CI: 0.55-0.64), AKI (OR: 0.67 95% CI: 0.63-0.72), or ECMO (OR: 0.51 95% CI: 0.36-0.7). In contrast, the odds ratios indicate reduced risk of these outcomes, but our quantitative bias analysis showed E-values of between 1.9 and 3.3 for these associations, indicating that comparatively weak or moderate confounder associations could explain away the observed associations. CONCLUSIONS: Study interpretation is limited by the observational design. Recording of NSAID use may have been incomplete. Our study demonstrates that NSAID use is not associated with increased COVID-19 severity, all-cause mortality, invasive ventilation, AKI, or ECMO in COVID-19 inpatients. A conservative interpretation in light of the quantitative bias analysis is that there is no evidence that NSAID use is associated with risk of increased severity or the other measured outcomes. Our results confirm and extend analogous findings in previous observational studies using a large cohort of patients drawn from 38 centers in a nationally representative multicenter database.


Subject(s)
Acute Kidney Injury , COVID-19 , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , COVID-19 Testing , Cohort Studies , Humans , Pandemics , Retrospective Studies
3.
Innovation in aging ; 5(Suppl 1):974-975, 2021.
Article in English | EuropePMC | ID: covidwho-1602494

ABSTRACT

Older age has been consistently associated with adverse COVID-19 outcomes. Frailty, a syndrome characterized by declining function across multiple body systems is common in older adults and may increase vulnerability to adverse outcomes among COVID-19 patients. However, the impacts of frailty on COVID-19 management, severity, or outcomes have not been well characterized in a large, representative US population. Using the National COVID Cohort Collaborative, a multi-institutional US repository for COVID-19 research, we calculated the Hospital Frailty Risk Score (HFRS), a validated EHR-based frailty score, among COVID-19 inpatients age ≥ 65. We examined patient demographics and comorbidities, length of stay (LOS), systemic corticosteroid and remdesivir use, ICU admission, and inpatient mortality across subgroups by HFRS score. Among 58,964 inpatients from 53 institutions (51% male, 65% White, 18% Black, 9% Hispanic, mean age 75, mean Charlson comorbidity count 3.0, and median LOS 7 days), 38,692 (66%), 4,180 (7%), 3,531 (6%), 3,525 (6%) and 7,862 (13%) had HFRS scores of 0-1, 2, 3, 4, and >=5 , respectively. Frailty was only moderately correlated with age and comorbidity (□=0.178 and 0.348, respectively, p<0.001). Overall, 34% received systemic corticosteroid and 19% received remdesivir. We observed 4% ICU admissions and 16% inpatient death. Among non-ICU admissions, after adjusting for demographics and comorbidities, frailty (HFRS ≥ 2) was associated with 79% greater systemic corticosteroid use and 22% greater remdesivir use, whereas a higher HRFS score was marginally associated with higher rates of severe COVID disease, inpatient death, or ICU admission.

4.
EBioMedicine ; 74: 103722, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1536517

ABSTRACT

BACKGROUND: Numerous publications describe the clinical manifestations of post-acute sequelae of SARS-CoV-2 (PASC or "long COVID"), but they are difficult to integrate because of heterogeneous methods and the lack of a standard for denoting the many phenotypic manifestations. Patient-led studies are of particular importance for understanding the natural history of COVID-19, but integration is hampered because they often use different terms to describe the same symptom or condition. This significant disparity in patient versus clinical characterization motivated the proposed ontological approach to specifying manifestations, which will improve capture and integration of future long COVID studies. METHODS: The Human Phenotype Ontology (HPO) is a widely used standard for exchange and analysis of phenotypic abnormalities in human disease but has not yet been applied to the analysis of COVID-19. FUNDING: We identified 303 articles published before April 29, 2021, curated 59 relevant manuscripts that described clinical manifestations in 81 cohorts three weeks or more following acute COVID-19, and mapped 287 unique clinical findings to HPO terms. We present layperson synonyms and definitions that can be used to link patient self-report questionnaires to standard medical terminology. Long COVID clinical manifestations are not assessed consistently across studies, and most manifestations have been reported with a wide range of synonyms by different authors. Across at least 10 cohorts, authors reported 31 unique clinical features corresponding to HPO terms; the most commonly reported feature was Fatigue (median 45.1%) and the least commonly reported was Nausea (median 3.9%), but the reported percentages varied widely between studies. INTERPRETATION: Translating long COVID manifestations into computable HPO terms will improve analysis, data capture, and classification of long COVID patients. If researchers, clinicians, and patients share a common language, then studies can be compared/pooled more effectively. Furthermore, mapping lay terminology to HPO will help patients assist clinicians and researchers in creating phenotypic characterizations that are computationally accessible, thereby improving the stratification, diagnosis, and treatment of long COVID. FUNDING: U24TR002306; UL1TR001439; P30AG024832; GBMF4552; R01HG010067; UL1TR002535; K23HL128909; UL1TR002389; K99GM145411.


Subject(s)
COVID-19/complications , COVID-19/pathology , COVID-19/diagnosis , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
5.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1306627

ABSTRACT

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Subject(s)
COVID-19 , Databases, Factual , Forecasting , Hospitalization , Models, Biological , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/mortality , Comorbidity , Ethnicity , Extracorporeal Membrane Oxygenation , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States , Young Adult
6.
J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-719257

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.


Subject(s)
COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States
SELECTION OF CITATIONS
SEARCH DETAIL